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1. INTRODUCTION

We consider approximation from the class

IPn •K

of functions on (some domain in) ~N which consist of no more than K
polynomial pieces each of order n, i.e., of total degree less than n. Approxi­
mation from IPn•K for N> 1 was studied as early as 1967 by Birman and
Solomiak [2]. Improvements of their results were obtained by Brudnyi [3],
and much of the work is presented in his survey article [4]. Birman and
Solomiak make use of a kind of adaptive partition algorithm involving
m-cubes in some of their work, but their results do not contain ours nor ours
theirs. Their results go beyond the statement that dist(j, IPn.K) = O(K-n)
for smooth functions. But, their description of certain function classes for
which such an optimal rate of approximation is achievable is in terms of
certain moduli of smoothness. This description is difficult to apply to a
specific function not in eCn). By contrast, our analysis includes explicitly
functions of the form

f(x) = g(x) dist(x, S)",
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where g E c(n) and S is a smooth manifold. We show that the optimal
convergence rate on D ~ IRN can be achieved if ex > mnjN - (N - m)!p,
where m := dimeS) and ILv-approximation is used. We also show by an
example that this restriction on ex is in general necessary for optimal conver­
gence rates. These examples help to establish the boundary of the class of
functions which saturate piecewise polynomial approximation. Our analysis
is not restricted to piecewise polynomial approximation and includes, for
example, approximation by blending function methods.

We now describe the subject matter of our paper in some detail.
We are interested in gauging the efficiency of an adaptive algorithm for

the approximation of functions, or of functionals on functions, on some
domain D in IRN • The algorithm produces a subdivision of D into K non­
overlapping cells C1 , ... , CK and, on each such cell Ci , an appropriate
approximation.

The ingredients for the algorithm are:

al. A collection iC of allowable cells.

a2. A (nonnegative) function E: C ---+ IR, with E(C) giving the error
(bound) for the approximation on the cell C.

a3. An initial subdivision of the domain D into allowable cells.

a4. A division algorithm for subdividing any allowable cell C into two
or more allowable cells. C is called the parent for these latter cells.

The adaptive algorithm consists in producing, for each current subdivision,
a new subdivision by dividing some cell in the current subdivision it la a4,
until E(C) ~ E for all cells in the current subdivision, with E some prescribed
positive number.

Existing adaptive algorithms for quadrature or for piecewise polynomial
approximation (in one variable) are considerably more sophisticated than
this simple algorithm. Yet our simple algorithm allows us to analyze quite
satisfactorily the efficiency of the approximations produced by these more
complex algorithms, i.e., the relationship between the prescribed tolerance E

and the number K = K(E) of cells in the final subdivision.
Here, we visualize the work of constructing the appropriate approximation

on an allowable cell to be the same for all cells so that the work for con­
structing the final approximation is proportional to the number K of cells
in the final subdivision. This is still true even if we count all the intermediate
approximations constructed as well, since the total number of cells considered
cannot be bigger than 2K. On the other hand, E, or at times KE, or some
other function of €, measures the accuracy achieved by the final approxi­
mation.

For the analysis ofthe relationship between K and €, we make the following
assumptions regarding iC and E.
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c1. C consists of bounded, closed, convex sets.

c2. Cells are not too different from balls: Associated with each cell
C E C are two closed balls, be and Be , for which be ~ C ~ Be , and

7J := inf diam(bd/diam(Bd > O.
eeiC

c3. Invariance under scaling: If C E C and c is the center of its inscribed
ball be , then, for all positive p,

Co := c + p(C - c) E Co

dl. Parent and children have comparable size: For some positive f3
and all C E C, each child C' of C produced by the division algorithm a4
satisfies

I c' III C I ~ f3.

Here, and below, IB I denotes the N-dimensional volume of B.

el. Monotonicity: C ~ C' implies E(C) ~ E(C').

The basic tool in our analysis is the number

I E I. := t dxI8(x, €)

with

8(x, €) := inf{1 C I: x E C E C, E(C) > €}.

We will show that
K(€) ~ IE 1.1f3

(5)

(6)

and, in this way, obtain quite explicit bounds on K for specific choices of E.
The following lemma gives a hint as to why (6) might hold.

LEMMA 1. If (Ci)f is a subdivision for D with E(Ci) > € for all i, then
K~ lEI•.

"Proof". We have

KKK

K = ~ I Ci 1/1 Ci I = ~ f dxll Ci I :::;; L f dxl8(x, €) = I E I.
t=1 t=1 C j t=1 C j

since 8(x, €) ~ I Ci I for all x E Ci • I
Of course, this argument fails to establish that 1/8(·, €) is even integrable.

But, as we said, it gives a hint as to why (6) might be true.
In the next section, we derive various basic properties of the function 8

and the number I E I. and prove (6).
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2. THE FUNCTION 0

We begin our discussion of the function 0 by establishing some properties
of the allowable cells.

LEMMA 2. For all C E iC and all y, the allowable cell Cp := c + p(C - c)
contains y for all p ;;:: 1 + dist(y, C)/radius(bd. Here, c is the center of the
associated inscribed ball be .

FIG. 1. Determination of p for which y E c + p(C - c).

Proof Any such cell is allowable by c3, so that we only have to prove that
y E Cp for the specified values of p. This is obvious for dist(y, C) = O. Let
dist(y, C) > 0 and let b' be the ball around y of radius dist(y, C), and let d'
be a point common to C and b' . In a plane containing d', y and c, let I
be the straight line through d' which intersects the segment [c, y], at the point
d, say, and is tangent to be, at the point t, say. Then dEC by convexity,
hence y is contained in the cell

Iy - c I
c + I d _ c I (C - c).

But then, r := dist(y, 1) ~ dist(y, C), and, with t' the point of 1closest to y,
the two triangles (c, d, t) and (y, d, t') are similar. Therefore

Iy - dl
I d- c I

I y - t' I _ r :s: dist( y, C)
I c - t I - radius(bc) "" radius(bc)

and the lemma now follows since I y - c III d - c I = 1 + Iy - dill d - c I
(see Fig. 1). I

COROLLARY. I{O(x, e) < 00 for some x, then () is bounded on bounded sets.
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Proof By assumption, there exists C E C with x E C and E(C) > €. If
now y E C, then O(y, €) ~ I C [, while, if y ¢ C, then, by the lemma, y E C'lJ =
C + p(C - c) for p:= 1 + dist(y, C)/radius(bd. But then, Cp J C (by
convexity of C), hence, by el, E(Cp) ~ E(C) > €. This shows that, for every y,

A little more work proves that 0 is locally Lipschitz continuous.

(7)

THEOREM 2.1. !f0(·, €) isfinite at some point, then

I O(x, €) - O(y, €)I ~ L(x, y) I x - y I, all x, y, (8)

with L bounded on bounded sets.

Proof Let x E C E C with E(C) > € and let r := radius(bc). By (7),

O(y, €) - I C I ~ (pN - 1) I C 1

with

p = 1 + dist(y, C)lr ~ I + Iy - x Ilr,

hence
N-l

(pN - 1) 1C I ~ (p - 1) I C I L pn
n~l

N-l

~ Iy - x I (I C IIrN
) L (r + I y - x I)n rN -

1
- n .

n=l

By c2, 1be I ~ I C I ~ I Be 1~ I be IIf3N while I be I = rN constN • Therefore
I C IlrN ~ constN/f3N and r ~ (I C I/constN)lfN, showing that

O(y, €) - I C 1~ (pN - 1) 1C I ~ FN(I C I, Iy - x I) Iy - x I

for some function FN which depends only on N and is monotone increasing
in its two arguments. By taking the infimum over all such C, we get

O(y, €) - O(x, €) ~ FN(O(x, €), I y - x I) Iy - x I,

which proves (8) with L(x, y) := FN(max{O(x, €), O(y, €)}, 1 y - x I). But
such L is bounded on bounded sets by the corollary to Lemma 2 and the
monotonicity of FN . I

COROLLARY. If G C IRN is bounded and mG := infxEG O(x, €) > 0, then
1/0(', €) is Lipschitz continuous on G.

It is obvious that O(x, .) is monotone (even if E were not). Further, one
would expect lim...o O(x, €) = °for each fixed x, but this need not happen.
Consider, e.g., the case when N = 1, C consists of all closed intervals, and
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E(C) = distoo.c(J, PI) withfthe step function having just two jumps, both of
positive size 2, at -1 and 1, say. Then

E(C) = number of jumps off contained in C.

Therefore, B(x, E) is infinite for I' ~ 2. Further, for 1 ~ I' < 2,

1

![x, 1]1 = I x I + 1
B(X,E)= 1[-1,1)1=2

1[-I,x]l=x+l

Finally, for 0 < I' < 1,

if x ~ -1,
if -1 ~ x ~ 1,
if 1 ~ x.

B(x, E) = dist(x, {-I, I}).

Note that the failure of B(x, E) to go to zero with I' implies that, because of (6),
unusually good approximation rates are possible. This will be taken up again
in Section 5.

The example also illustrates the possibility that, even for positive 1', B(·, E)
may vanish at some points. In such a case, though, our algorithm will not
terminate since then, by the monotonicity of the error E, E(C) ~ I' for all C
containing a point x with ()(x, E) = O. Since ()(y, E) cannot grow faster than
canst Iy - x Inear such a point, by Theolem 2.1, it follows that fG dy/()(y, E)
is infinite for any G containing x. Thus, (6) holds trivially in case ()(x, E) = 0
for some xED, both sides then being infinite for all small E.

We are now ready to prove (6).

THEOREM 2.2. Let (Ci)f be a subdivision of D produced by the adaptive
algorithm from an initial subdivision (Cl) with E(Cl) > 1', all i. Then, with fJ
the constant in assumption d1,

(6)

Proof By assumption, B(·, E) is finite everywhere and, since the algorithm
stopped, 1/8(" E) must be finite everywhere in D. Hence, by Theorem 2.1,
1/()(" E) is continuous on D (and positive), thus integrable, and

for all C E C, Ie dxIB(x, E) = I C I/B(xc , E) for some Xc E C. (9)

Now, for each i, let J i be the parent of Ci (in the sense of a4). Then E(Ji ) > 1',

therefore ()(y, E) ~ I J i I ~ I Ci IlfJ, using dl, for all y E Ji • Hence

K K

K = L I Ci III Ci I ~ fJ-1 L 1 Ci 1/()(xcj , E)
i~1 i~1

K

= fJ-1 L J. dxIB(x, E) = I E 1.lfJ.
i-I Cj

which finishes the proof. I
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We will show in many specific circumstances that, as € --+ 0, both K = K(€)
and IE I. go to infinity at the same rate, so there is then no doubt as to the
sharpness of (6). Still, it is nice to know in general whether the two quantities
are comparable. For this reason, we now prove a converse inequality.

THEOREM 2.3. Suppose 1/8(·, €) is Riemann integrable uniformly in €, i.e.,
there exists w with w(O+) = 0 so that for any subdivision (Ci) of the bounded
domain D and any choice ofpoints Xi E Ci ,

IIn dxI8(x, €) - I I Ci !/B(xi , E) I ~ w(m~x I Ci I) I E I., all E.
•

Then,for any subdivision (Ci)f of D with E(C,) ~ €, all i,

(I - w(1 D 11K» IE I. ~ constN.8.~ K. (10)

Hence, iflim.->o K(€) = 00, then I E I. and K(€) approach infinity at the same
rate.

For the proof, we need the following lemma.

LEMMA 3. If C E C and E(C) ~ €, then, at the center Xe of the inscribed
ball be for C,

(11)

Proof If Xe E C' E C with circumscribed ball Be' and IBe' I ~ Ibe 1/2N,
then C' ~ Be' ~ be, and so E(C') ~ E(bc) ~ E(C) ~ €, by el. Hence,
Xe E C' E C and E(C') > € implies that Ibe 1/2N < IBe' I, while, by c2,

for all t E iC.

Therefore, I C I (TJI2)N ~ Ibe 112N < I Be' I~ I C' I/TJN, and (11) now follows
since C' was arbitrary. I

Proofof Theorem 2.3. Let (Ci)f be any subdivision for D with E(Ci) ~ €,

all i, and let Xi be the center of the ball be inscribed in the cell Ci , all i.
i

Then, by Lemma 3 and the assumption on uniform Riemann integrability,
we have

K K

K = L I C i III Ci I ~ (2ITJ2)N I I Ci I/B(xi , €)
i=1 i~1

= (2ITJ2)N [I E I. + (~1Ci 1/8(xi , €) - IE I.)]
~ (2ITJ2)N[1 - w(max Ci)] I E I•.

I
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There is, of course, no guarantee that maxi I Ci I -+ 0 as e -+ O. Still, we
may refine our subdivision sufficiently while keeping the number of its cells
within O(K) as follows. Starting with the subdivision (Ci)f under discussion,
we carryon with the adaptive algorithm until a new (finer) subdivision (Ci)f'
is reached with maxi I C; I ~ I D 11K. Then, the parent of each new cell must
have had volume greater than I D 11K, hence there must have been less than
K such parents, and each such parent could not have had more than llfJ
children, by d1. Consequently, K' ~ (1 + fJ-l)K (in particular, the algorithm
must have stopped), and from our earlier argument, now applied to the
refined partition (C;),

(1 + fJ-l)K ): K' ): (2IfJ2)N[1 - w(1 D IIK)] IE I.· I

We conclude this section with a short discussion of our error measure

I E I. = Iv dxl()(x, e).

I E I. increases with e-1 and, usually, lim.-+o I E I. = 00. In particular
instances, we are able to state quite precisely how I E I. goes to infinity with
e-1•

In general, I . I. is monotone, i.e.,

E~F implies I E I. ~ 1Fl.· (12)

Also, IE I. = I exE I",. for ex > O. Finally,

(13)

For the proof of (13), note that for any C E C with (E + F)(C) > 2e, we
must have max{E(C),F(C)} > e, hence ()E+ix, 2e)): min{()E(x, e), ()F(X, e)},
and so

3. AN EXAMPLE: BEST ApPROXIMATION IN ILp[a, b] FROM IP'n.K

In this section, we bound I E I. for a specific choice of E in order to
illustrate the use of Theorems 2.2 and 2.3.

We are given a functionfon some interval [a, b], andfis in c(n) on [a, b]\{s}.
But we know that

(15)
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for some lX with lXp > -1. We intend to approximate/from IP'n.K, i.e., by
piecewise polynomial functions consisting of at most K polynomial pieces,
each piece of order n, i.e., of degree less than n. We take the ILp-norm

(f b )l/P
II g lip := Ig(x)IP dx

a

as our measure of function size. Our assumptions on / then imply that
/ E lLp[a, b].

Rice [8] has shown some time ago that, for such an 1,

We are about to reprove this result. In fact, we will prove that the approxi­
mation to such a function/constructed by the adaptive algorithm approaches
/ at the rate O(K-n).

As collection C of allowable cells we choose all finite closed intervals on IR.
Thus, c1, c2, c3 are satisfied, and 'TJ = 1 in c2. For the division algorithm a4,
we take interval halving, so dl is satisfied with f3 = 1/2.

Ideally, we would take for the error measure on the interval C the distance
of/Ie from IP'n,

But it is simpler, and corresponds better to actual practice, to work with
some bound E(C) for ElC). Such a bound we now derive.

If / E CCn)(C) for some interval C C [a, b], then distp.e(f, IP'n) ~
constn Ilf(n) IIp,e I C In+1/p. Thus, with our assumption (I5), we have E,(C) ~
const',nF(C), with

F(C) := dist(s, c)~-n I C In+1/p, all C C [a, b] (16)

for such C. Note that F(C) = 00 in case SEC if, as we assume,

lX < n.

Hence, for such C, and for C "near" s, we need an alternative bound. If s is
not in the interior of C, e.g., C = [u, v] with v ~ s, then we have

f(x) = I f(j)(u)(x - U)ifj! +r (x - t)n-l fCn)(t) dtj(n - I)!
j<n U

and so
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But, by (15),

DE BOOR AND RICE

Ir(x - t)n-l jln)(t) dt I ~ constnJ rI x - t In-l I t - s I~-n dt
u u

~ constn.f f' I s - t I~-l dt
u

Therefore,

f )l/P Iv
dist""cCf, IfDn) ~ const ( Is - x I~P dx ~ const l(s - X)~+l/P [.

C u

This shows that, for such C, dist""c(f, IfDn) ~ const,.n G(C), with

G(C) := (dist(s, C) + I C [)a+l/p, all C C [a, b). (17)

Finally, if the singularity s lies in the interior of C, then the error might
be as bad as const, I C Il/p without additional hypotheses on f Hence, if
a > 0, then we assume that dist",.c«(, IfD n) ~ constn.f G{C) also for C with
s E int(C).

To summarize, we have

E, ~ constn.f E:= constn.t min{F, G}, (18)

with F and G given by (16), (17). Both F and G are monotone, and continuous
where they are finite, and F(C) = 00 implies G(C) < 00. Hence E is mono­
tone and continuous. Extending E to all of C by

E(C) := E(C () ra, b))

clearly changes nothing in this.

PROPOSITION 3.1. For the function E defined in (18),

1E I. ~ const c l /(n+1/p).

Proof For each x E [a, b], let Cx be an interval with x E Crt and I Crt I =
8(x, E), hence E(Crt) = E. Such surely exists for all sufficiently small E by the
continuity of E. Then Crt C [a, b].

If now dist(s, Crt) ~ [ CX I, then

F(Crt) = dist(s, Cx)a-n I C x In+l/p ~ I Crt la+1/p

while, for any C,
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Therefore, dist(s, Cx) ~ ICx I implies that e ;?;: I CX I,,+l/P, hence Is - x I ~
dist(s, Cx) + I Cx I :( 2 I Cx I :( 2e1/ C,,+1/p). This shows that

A := {x E [a, b]: dist(s, Cx) :( I Cx ]}

has I A I :( 4e1/("+1/Pl. Since

for XE A,

it follows that

t dx/(}(x, e) :( I A I 2e-1/(,,+1/p) :( 8.

On the other hand, since e ~ F(Cx) = dist(s, Cx),,-n I CX 1n+1/P, we have

1/(}(x, e) = 1/1 C x I :( (dist(s, C x),,-n/e)1/ln+1/p)

and so, as I s - x [ :( dist(s, Cx) + I Cx I < 2 dist(s, Cx) for x ¢: A,

b

f dx/(}(x, e) :( e-1/Cn+1/p) f (I s - X 1/2)C,,-nl/(n+1/p) dx
J\.1 a

:( e-1/(n+1/p) consta,b.",P .

Thus

IE I. = rdx/(}(x, e) = (f + i )dx/(}(x, e) :( 8 + const e-1 /(n+1
/p)

a A \.4

which finishes the proof. I
It follows with Theorem 2.2 that, for such a function J, the adaptive

algorithm working either with Ef or with the bound constn.f E for it, produces
an approximation g E DJln,K to f for which

Ilf - g II~ :( Ke P :( const e P - 1/(n+1/p) = const e pn / cn+1/p),

while, again by the proposition, e1/(n+1/p) ~ const/f (dx/(}(x, e» :( const/K.
This shows that then

Ilf - g lip :( const en /(n+1/P) :( const K-n,

the promised bound.
Note that the argument also covers functions having finitely many singu­

larities of algebraic type no worse than ex. Precisely, if f = L~jj, with
jj E CCnl([a, b]\{sj}) and Ift)(x) I :( aj I x - Sj !,,-n, all j, then, from the
argument for (13),

r

I Ef Ir. ~ L I ajEj I.
j=1
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with Ej := min{Fj , Gj} andFj and Gj defined by (16) and (17) with s replaced
by Sj' Thus

r r

IE f I. ~ I [ E j I./(ra;) ~ const ,,-l/ln+l/
p) I (raj)l/ln+l/ p ).

j~l j~l

Therefore, the adaptive algorithm produces approximations of optimal order
for such functions, too.

We have carried out this last argument in such detail in order to show that
it will not, by itself, support the analysis of an f with infinitely many singu­
larities. For this, a more refined version of (13) would be needed. Also, our
argument comes close to, but does not recapture, the result by Burchard
[5-6] and others that

distil, iP>n.K) ~ const K-n II jln) 11l/(n+1/p) • (18a)

4. THE ADAPTIVE APPROXIMATION OF A FUNCTION ON IffiN WITH SINGULARITIES

ON A SMOOTH MANIFOLD

In this section, we investigate the approximation of a function f on some
bounded domain D in IffiN whenfis in c<n)(D\S) for some smooth manifold S
of dimension m. We do not specify the collection C of allowable cells beyond
the requirements made in Section 1. Then we have

for C n S = 0 (19)

with

pn)(c) := sup max I(DYf)(x)f,
xeC lyl=n

as is well known (see, e.g., Morrey [7; p. 85D. Here, iP>n stands for the
collection of polynomials on IffiN of total degree less than n. If now f were
smooth enough, i.e., if j(n)(D) < 00, then, for any partition (Ci)f of D,
we would get an approximation g to f with

Ilf-gll~ = Idistp,C<J, Ifl>n)p
i

~ (constnpnl(D»p I I Ci I (diam ci)np

i

hence
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This expression is O(K-n/N) if the Ci are chosen to be more or less uniform.
We intend to show that this same optimal order of approximation can be
achieved even for a function with certain singularities when the approximation
is constructed by our adaptive algorithm.

We now specify the singular behavior off We assume that

j<nl(C) ~ const! dist(S, c),,-n. (20)

Here and below, we take the distance between two sets in IRN to be the
shortest distance between them, i.e.,

dist(S, C):= inf I s - c I,
SES
cEC

with I . I denoting Euclidean distance. Our assumption (20) does not imply
much about distp,C<f, [P>n) in case S n C =1= 0. We make the assumption
that

for C n S =1= 0. (21)

Consequently,

with

E(C) := min{F(C), G(C)},
F(C) := dist(S, C),,-n(diam C)n I C II/p,

G(C) := (dist(S, C) + diam C)" I C II/p.

Finally, we assume that the m-dimensional manifold S of singularities of/is
smooth in the following sense:

s1. It is possible to subdivide D into finitely many (nonoverlapping)
pieces DI , ... , Dr so that, for each i, either dist(S, Di ) > 0 or else there exists
a continuously differentiable map fIJi which maps the cylinder

Zm : = \x E IRN: 0 ~ Xi ~ 1 for i = 1,... , m; .L xl ~ 11I 3>m \

one-one onto some neighborhood Vi of D i so that

( )

1/2

dist(flJi(X), S) = .L xl
3>m

THEOREM 4.1. If/E c<n)(D\S) and (20), (21) both hold for some (X with

(X> mn/N - (N - m)/p, (22)
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and the manifold S ofsingularities off is smooth in the sense that it satisfies s1
above; then the adaptive algorithm, starting from a subdivision (C;) for D with
C; E C and E(CD > E, all i, produces a subdivision (Ci)f of D for which

K ,s;: const
f

E-l /(n/N+1/p).

Proof The proofparallels the one for Proposition 3.1. We assume without
loss of generality that IX ~ n, since (20), (21) hold for IX = n if they hold for
some IX > n. By Theorem 2.2, K ,s;: f3-1 fD dxI8(x, E). To estimate 8(x, E),
let x E C'" E C with 8(x, E) = I c'" I and E(C",) = E. By c2, there exists a
positive const = constN ,,, so that

const diam C ?: I C Il / N ?: diam Cfconst, for all C E C.

Set
A := {x E D: dist(S, C",) ,s;: diam C",}.

Then, for x E A,

F(C",) ?: I diam C", 10: I C", Il/P ?: const 1C", 100/N +1/P

while, for any x,

G(C",) ?: / diam C", 10: / C", /l/P ?: const / C", /o:jN+1/P.

Hence,

E = min{F(C",), G(C",)} ?: const I C", 100/N +1/P

This implies that EN/(o:+N/p} ?: const I C", I and so

dist(x, S) ,s;: dist(C", , S) + diam C",
,s;: 2 diam C", ,s;: const El/(o:+Njp)

for x E A.

for x E A. (23)

for x E A.

Further, for x E A,

E ,s;: G(C",) ,s;: (2 diam C",)o: I C", /l/p ,s;: const / C", /o:/N+1/p

which proves that

1/8(x, E) = III C", I ,s;: const E-N/(o:+N/p) (24)

By assumption, sl holds, hence S has finite m-dimensional volume. There­
fore, (23) and (24) combine to give

t dxI8(x, E) ,s;: const CN/(o:+N/p) I A I
,s;: const E-N/(o:+N/V) consts E(N-ml/(o:+N/P)

= const E-m/(o:+N/p)

,s;: const E-N/(o:+N/VI.
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Next, since

€ ~ F(Cz) ~ dist(S, Cz),x-n(diam C",)n I Cz Il/p

~ const dist(S, Cz)",-n I Cz InlN+llp

we have

1/()(x, €) = 111 Cz I ~ const(dist(S, Cz)ot-nj€)NI(n+N/P).
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Now, for x rt A, dist(x, S) ~ dist(S, Cz) + diam C'" < 2 dist(S, Cz). Thus,
with ex ~ n,

l/()(x, €) ~ €-N/(n+l/p) const(dist(x, S)/2)(ot-n)/cn/N+lIP),

It follows that

x rt A. (25)

J dxl()(x, €) ~ cNICn+Nlp) const J dist(x, S)Cot-n)/Cn/N+I/p) dx.
D\A D

Finally, we show that the last integral is finite under our assumptions.
For this, we make use of the smoothness assumption sl on S. For each D;
in the postulated subdivision of D, we have

f dist(x, S)Y dx ~ ID; Idist(D; ,S)Y
D,

with

y := (ex - n)/(nIN + lip)

since y is negative by (22). Hence, JD, dist(x, S)Y dx is finite In case
dist(D; ,S) > O. If, on the other hand, dist(D;, S) = 0, then, by sl,

t,dist(x, S)Y dx = ("'CD,) (~ XlY/2 det <pi(x) dx

~ const J (.L: Xl )Y
/
2dx

Zm l>m

~ const J I x IY dx,
SN_m

with Sk the unit sphere in IRk. Since

f I x Iy dx = constk i rrY+k-1 dr ds,
~ a~ 0
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we have fD, dist(x, S)'Y dx < 00 provided y > -(N ~ m), i.e., provided

(ex - n)/(nIN + lip) > m - N. (26)

But this is exactly the second inequality in (22). I

We know ([2; Lemma 3.2]) that, for fE W:'D\S , (19) may be replaced by

distp.c(f, IJl'n) ~ constn I C la/N+1/p-l/q IlfllLa (19a)
••C

where II • liLa C is the Lq-norm on the cell C of the a-th derivative (possibly
fractional). 'This bound reduces to (19) when q = 00 and a = n. We replace
assumption (20) by

IlfllLa ~ constf . dist(S, c)~-a I C 1
1/ q

•.c
(20a)

and clearly the only case of interest is ex < a. Assumption (21) is unchanged
as are the functions E, F, and G. Then we have

COROLLARY 1. Assume fE W:'D\S and that both (20a) and (21) hold for
some ex with

ex > maiN - (N - m)lp.

Then, with the remaining hypotheses of Theorem 4.1, we have

K ~ const
f

• E-1 /(a/N+1/p).

Denote by

the collection of piecewise polynomial functions of order n consisting of no
more than K pieces, with the corresponding subdivision (Ci)r of D with
r ~ K taken from C.

COROLLARY 2. Under the assumptions of the theorem,

Proof. For each small enough E, we can find a subdivision (Ci)f for D
so that Ef(Ci ) ~ E(Ci ) ~ E, while K ~ const E-N/(n+N/p) for some const =
constt.N.m.n.o:.D.S but independent of E. This shows that

EN/(n+N/p) ~ const K-l (27)
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and implies the existence of an approximation g E IPn.K for f for which

Ilf - g II~ :(; K€p :(; const €p-N/(n+N/p)

= const €pn/(n+N/p} :(; const K-pn/N,
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the last inequality by (27). I
Theorem 4.1 and its Corollary only treat functions with a smooth manifold

of singularities in the sense of s1. Thus, a function like f(x) := x/' + xl on
1R2 is not covered. But, by (13) and its obvious generalization, we clearly get
distp.cCf, IPn.K ) = O(K-n fN) for anyfwhich can be written as a finite sum of
functions satisfying the assumptions of Theorem 4.1. Thus, the function
f(x) = Xl" + xl is covered. Still, Theorem 4.1 does not apply to functions
like

for x E 1R2•

Finally, Theorem 4.1 has the assumption that the domain D be representable
as the finite union of nonoverlapping allowable cells. This, is offhand, a
severe restriction. E.g., we require all allowable cells to be convex, and,
typically, C consists of just hyperrectangles. But, if D is not so representable,
then it is sufficient to start off with some domain fJ containing D which is the
union of nonoverlapping allowable cells (CD provided we can extend f'
suitably to this larger domain fJ. The possibility of such an extension is
already implicit in the discussion of the error function E at the beginning
of this section. Our estimate (19) for dist:p.c(f, IPn) makes sense only if
C C dom! Without trying to squeeze the most general statement out of our
arguments, we can say that Theorem 4.1 applies to the approximation of any
function f on D which can be suitably extended to some bounded convex
domain fJ containing D. The definition of E, offhand defined only for C C fJ,
is then extended to all C E C by E(C) := E(C n fJ), and the condition of
Theorem 4.1 is relaxed to require initially only a finite covering (CD for D of
allowable cells with E(Ci ) > €, all i.

Note that, for m oF 0, (26) is stronger than the inequality

ex> (m - N)jp

needed to conclude that f E IL p (D). One might, for this and other reasons,
raise the question of whether (26) is necessary. We now show that (26) is
necessary in general to achieve the optimal approximation rate O(K-n/N).

THEOREM 4.2. If m > 0, then there exist C, D, Sand f satisfying all
assumptions of Theorem 4.1 except that ex is not an integer and satisfies

-(N - m)jp < ex < mnjN - (N - m)jp, (28)
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and, for this f,

Proof We choose

and take

DE BOOR AND RICE

S:= {x E IRN : Xi = 0 for i > m}

f(x) := dist(x, S)a.

We choose D to be the unit cube {x E IRN : 0 ~ Xi ~ 1, all i} and take C to be
the collection of all scaled translates of D.

We claim that

for all C E C, C n S =F 0, (29)

for some positive const independent of the particular C. For the proof, let
rp: IRN~ IRN: x f--* px + s for some positive scalar p and some s E S. Then
frp = p"f while, for any gEl?n' grp E I?n' Therefore, if gEl?n is a best
!Lp-approximation to f on C E C, then

distp.c(f, I?n)P = Ie I f(x) - g(xW dx

= J I paf(y) - g(py + s)IP pN dy
",-l(C)

But since rp-l(X) = p-1x + Sf with Sf = -sip E S, this implies that

Associate now with each C E C a specific map rp: x f--* px + s for which s E S,
rp-l(C) n S.l. =F 0 and I rp-l(C)I = 1. Then p = Cl/N and rp-l(C) n S oF 0.
Hence, for all C E C with C n S =F 0,

distp,c(f, I?n) = I C la/N+l/p distp,,,,-l(C)(f, iP'n)

? const I C la/N+l/p

with

const := inf{distp.cCf, I?n): C E C, C n S.l =F 0 =F C n S, I C I = I}.
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If now const = 0, then, since distfl,c(J, I?n) is a continuous function of C on C
and the infimum is taken over a compact subset of C, we would obtain a
C E C with I C I = 1 for which f Ic E I?n , which is absurd since 0: is not an
integer.

With (29) thus established, let (Ci)f be any collection of nonoverlapping
cubes which cover S n D. Then, by (29),

errorP := L distp,c;(f, I?n)P ~ constPL I Ci I(P<>/Nl+l
i i

while

since they cover S n D. But this implies that

1

K K /1/P
error ~ const inf i~1 I Ci I(P<>/Nl+l: i~ I Ci Im/N ~ 1\

~ const 0

with

oP := inf 1i~ I Ci IY: i~ I Ci I = I!

and

y := (po: + N)lm.

Since y > 1 by the first inequality in (28), the last infimum is taken on when
I Ci I = 11K, all i. Thus

K

oP = L K-Y = Kl-y.
i=1

This proves that, for some positive const,

distfl.D(J, I?n) ~ const K(l-y)/p

= const K-<>/mHm-N)/(pm)

=1= O(K-n/N)

since, by assumption (28), -o:lm + (m - N)1(pm) > -nIN. I
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5. SUPERCONVERGENCE

In this section, we give one more application of Theorem 2.2, this time to
illustrate how it deals with superconvergence.

First, consider the step functionf on IR with just one jump, of size 1, say,
at some point X o E ( -1, 1). The function is to be approximated from II\.K
in the ILl-norm. Clearly, the placement of just one breakpoint, at Xo , would
provide exact approximation. But we are dealing with an adaptive algorithm
which only knows (a bound for) the function Ef , and does not know the
point X o ' We want to show that, even without the exact knowledge of the
jump point xo, our adaptive algorithm performs in this case much better
than the "optimal" rate O(K-1) would indicate.

It is easy to see that

for any particular interval C. Thus

8(x, e) = dist(x, xo) + e
and so

I E j I. = f 1 dx/(I x - Xo I + e) = 2In(1/e) + In[(1 + Xo+ e)(1 - Xo + e)].
-1

Consequently, the adaptive algorithm produces a subdivision with

K ~ (21n(l/e) + const)/fJ

intervals for a total error of no more than

(30)

In fact, the total error is ~e since the approximation fails to be perfect
only in the one interval which contains Xo in its interior. Further, if interval
halving is used, i.e., fJ = 1/2, then, at each stage, only the interval containing
Xois subdivided. Assuming Xo to be in general position, i.e., Xo rt {r2': r, S E l},
the error with K int~rvals behaves therefore like 2-K = e-K1n2• Thus, the
error goes to zero even faster than our estimate O(e-K / 4) in (30) would
indicate.

As a second example, we consider ILc approximation from 11\.K to the
function

We take D to be the unit square and take for C all scaled translates of D. It is
now not possible to havefapproximated exactly; still, it can be approximated
better than the "optimal" order O(K-1/2) possible for general smooth
functions.
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Let C E C. If the line S := {x E 1R2: Xl = x 2} intersects C at all, it cuts it
into a triangle T and another piece, and then E,(C) = I T I. Otherwise,
Et ( C) = O. Thus, if x is the vertex of C farthest from Sand h is its side, then

E (C) = 12(h - I Xl - X 2 1/2)~ for h ~ I Xl - X 2 I
f II Xl - X2 12/2 for h > I Xl - x 2 1.

This shows that, for 1 Xl - x2 1
2/2 ~ €,

(h - 1 Xl - X2 1/2)2 = (€/2)1/2. Thus,

8(x, €) = 1~~/2)1/2 + 1 Xl - x 2 1/2)2

8(x, €) = h2 with h such that

if 1Xl - X2 1 ~ (2€)1/2
otherwise.

Consequently, B(x, €) ~ 2€ for all x, and so 1Et I. ~ ID 1/(2€). But the
resulting estimate K€ ~ (const/(2€))€ = const for the total error is not too
encouraging.

We get a sharper bound as follows. Set

A := {x E D: 1 Xl - X2 1 ~ (2€)1/2}.

Then 1A 1~ y'2 (2€)1/2, hence

Ldx/8(x, €) ~ IA 1/(2€) = I/E
l

/
2

•

Also,

f dx/B(x, E) = f «E/2)1/2 + I Xl - x21/2)~2 dx
D\A

1 J1/2
~ 2 f «€/2)1/2 + S)-2 8 ds dt < 16/(2€)1/2.

o ./2

Thus 1Et I. ~ const/El / 2, hence € ~ const/K2 for the number K of squares
in the partition constructed by the adaptive algorithm. The error achieved is
therefore no bigger than KE ~ const/K, or, O(K-l) as compared to the
"optimal" rate O(K-l/2).

6. ALGORITHM REALIZATIONS FOR SMOOTH ApPROXIMATION

The obvious concrete realizations of the adaptive algorithm are for piece­
wise polynomial approximation such as analyzed in Sections 3-5. Most of
these realizations would produce discontinuous approximations. This is
perfectly acceptable for applications such as quadrature, i.e., ILc approxi­
mation, or in situations where only the accuracy of the approximation
matters. Other applications require smooth approximations and, in one
variable, this may be achieved by either using a local approximation scheme
that preserves smoothness (see Rice [91 for two such methods) or else by
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"smoothing" the original discontinuous approximation by "pulling apart
the knots." In principle, one can also "smooth" a multivariate piecewise
polynomial approximation, but it is not clear that one can do it in practice.
The simple mechanism of "pulling apart knots" is not available, and the
problem of carrying out some reasonable local "smoothing" on a piecewise
polynomial function on a nonuniform subdivision seems insurmountable.

The difficulty of preserving smoothness with piecewise polynomial
approximations is illustrated in Fig. 2. Near the point A, the polynomial
piece q = q(x, y) for x, y ~ 1/2 may remain fixed while squares above A are
continually refined. Unlessfis exactly equal to q near A, the enforcement of
continuity with q at A limits the accuracy of the approximations obtained
above A.

I I
I+.-H
A

FIG. 2. A subdivision of the unit square by quadrisection.

There are four independent properties of an algorithm realization:
localness, accuracy, smoothness and shape preservation (of the cells) which
we desire. The only schemes we know which have all these properties are
blending function schemes such as Coon's patches (see Barnhill [1] for a
survey of such schemes in 1R2). One may interpret "blending function"
to mean interpolation to the interior of a cell of data from all of the cell's
boundary, i.e., the data functionals have values in IRN - 1• Thus, only in IRI
does one obtain ordinary piecewise polynomial approximation, using local
Hermite interpolation.

The analysis of Sections 1 and 2 applies directly to adaptive blending
function approximations and we conjecture that these are the only realizations
of our adaptive algorithm that produce smooth approximations in IRN for
N>1.

Our algorithm can be modified to include a constraint on the "generation
gap" between neighboring cells (recall the terminology of "parent" of a cell
introduced in a4). We say that a subdivision is r-graded if the difference in
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generations between neighboring cells is at most r. A O-graded subdivision
is uniform. One can easily construct situations where this constraint makes the
subdivision of one cell the cause for subdivision of almost all the remaining
cells. In general, a graded algorithm will produce a larger K than our
algorithm does. We conjecture, however, that this constraint does not destroy
the optimal rate of convergence obtained in Section 4. In fact, it seems
plausible that (for almost all 1) there is an r depending on f, D, E and the
local approximation scheme, but independent of E, so that all subdivisions
produced by the algorithm are r-graded.

We close by noting that adaptive tensor product algorithms can be devised
which preserve smoothness for piecewise polynomials, but they cannot
achieve the optimal convergence rate.

Note added in proof Ron DeVore has pointed out to us that adaptive algorithms of
the kind we are considering here cannot be used to prove results like those at the end of
Section 3, as the following simple example shows. Consider the hat function

f(x):= 11 - I x II"" I x I <;;; .IY.

o ,otherwIse

and take p = 00, n = 1. Then the right side of (18a) becomes const/K regardless of IY..

Yet, to obtain an approximation from ~l.K to this/to within <1/2 requires cells of size
IY. and, because of assumption dl, the algorithm reaches cells of such size only after InlY./lntI
subdivisions, a number which goes to infinity as IY. ->- O.
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